Other NP-Complete
Problems

More terminology for Boolean expressions:
* Aliteral is a variable or the negation of a variable.
* Aclause is a single literal or the disjunction (OR) of literals..
A Boolean expression is in conjunctive normal form if it is a single

clause or the conjunction (AND) of clauses. For example,
("X V~yVz)A(XV~yV~z)

CNF-SAT is the language of satisfiable conjunctive normal form
expressions.

Theorem: CNF-SAT is NP-Complete.

Proof: We will show that SAT reduces (in polynomial time) to CNF-
SAT. In other words we will start with a Boolean expression s and
produce expression s' so that sis in SAT if and only if s' is in CNF-SAT.

If we had a truth table for s it would be easy to make s'. For example,

suppose we know that the only times s is F is when x=T, y=T, z=F and

when x=F,y=T,z=T. We can build clauses that negate these instances:
s'=("XV~yVz)AXxV~yV~z)

Unfortunately, building a truth table for s takes exponential time.

Rather than building a truth table, given s we will build a CNF
expression s' that has additional variables (and so is not equivalent to
s) but is satisfiable if and only if s is satisfiable.

Step 1: Parse s into a parse tree.
For example, if sis ~(x V ~y) V ~z the parse tree is

Step 2: Walk down the tree using DeMorgan's laws to push negations
to variables.

V /V\
~/ \N becomes A~
| \ /\ \

/\/ Z ~ 'Y z
\ |
X ~ X

Step 3. Start at the leaves and walk up, replacing each node with a
CNF expression that is satisfiable if and only if the subtree rooted at
the node is satisfiable.

N
Case 3A: Suppose the tree is / \
E1 E2

and we have already replaced E1 with CNF expression F1 and E2 with
F2. We replace the A-node with F1AF2.

Case 3B:

Suppose the tree is / \
E1 E2

and we have already replaced E1 with CNF ex

F1=g,Ag,A8; A...Ag, (the g. are the clauses of
F2=h,A h,Ah; A...Ah,. Lety be anew variab

nression
1) and E2 with
e not used in s or

any of the F-expressions. We replace the V-node with

F = (yVg)A(YVE,)A... AlyVgA(TyVhy) A(YyVhy) A... A(YyVh))
If y=T this requires h,A h,A h; A...Ahto be T, so F2 must be T.
Similarly, if y=F then F1 must be T. F is satisfiable if and only if

F1VF2 is satisfiable.

By the time we get to the root of the tree this has produced a CNF
expression s' that is satisfiable if and only if s is satisfiable. If the
length of s is n then s has no more than n literals, each with length no
more than n, so |s'| <=n?.

Example: In an earlier example we parsed s = ~(x V ~y) V ~z as

%
N

~y

V
N

~ ~ and converted that to A
| \ / N
/V Z <Y z
~ |

X ~
| X

y

The corresponding CNF expression is (WV~X)A(wVy) A(“wV™z)

Example: Start with ~(xA(yVz))V~xV(yA~z). This parses into

/V\ which / \
I /V\ converts to N/ >\ / \
INT N il
y/ V]

T
Z V z

C
/ \ Node A becomes (WV~X)A(“WV~y)A(~wV~z)
N

A \ VB B becomes (tV~x)A(~tVy)A(~tV~z)
WA
WAV

C becomes

(UVWV~X)A(UVWVY)A UV WV~ Z)A(CUVEVEX)A(YUV™EVY)A(~uV ™tV ~z)

3CNF is the language of conjunctive normal form expressions where
each clause has exactly 3 literals. For example, one expression in 3CNF
is (XV ~y VZ)A(xVy V~z)

3CNF-SAT (also called 3SAT) is the language of satisfiable 3CNF
expressions.

Theorem: 3CNF-SAT is NP-Complete

Proof: We will reduce CNF-SAT to 3CNF-SAT by converting CNF
expressions to 3CNF expressions.

lete=e; Ae, Ae; A.... Ae, be an expressioin in CNF. Each e, must be
a disjunction of literals.

a) Suppose e, has only one literal, x. Let r and s be new variables.
Replace e, by f.=(xVrVs) A(xV ~rV ~s) A(XV rV~s) A(xV ~rVv~s)
f. can be satisfied if and only if x is satisfied.

b) Suppose e, has only two literals, such as xVy Let r be a new
variable and replace e, by f=(xVyVvr) A(xVyVv~r)

c) Suppose ei has 4 literals: ei =x1V x2V x3V x4. Letr be a new
variable. Then f=(x1Vx2 V r) A(x3 V x4V ~r)
d) Suppose e has 5 literals: e, =x; VX, VX3 VX,V X:. Lets, ands,
be new variables. Then
f=(X; VX, VS;) AlX3 V ~5; VS,) AlX, V Xc V ™s,)

S; |'S, f. reduces to
T (T Xq V Xc
T|F X3

FIT | (X VX)A(X,V Xc)

F | F X, V X,

We can extend this pattern to any number of literals. If e, has n
literals then f, has n-2 clauses each with 3 literals and uses n-2 new
variables. |f.| <=3*]|e,| so the length of the 3CNF expression this
builds is a polynomial function of the length of the original CNF
expression.

